
HYBRID PRIKRY FORCING

DIMA SINAPOVA

Abstract. We present a new forcing notion combining diagonal super-
compact Prikry focing with interleaved extender based forcing. We start
with a supercompact cardinal κ. In the final model the cofinality of κ
is ω, the singular cardinal hypothesis fails at κ and GCH holds below
κ. Moreover we define a scale at κ, which has a stationary set of bad
points in the ground model.

1. Introduction

Groundbreaking works of Cohen and Easton showed that every reason-
able behavior of the powerset operation for regular cardinals is consistent. In
contrast, for singular cardinals, there are deep ZFC constraints on the pow-
erset function, and consistency results require large cardinals. This leads to
a long standing project in set theory, known as the Singular Cardinal Prob-
lem: find a complete set of rules for the behavior of the operation κ 7→ 2κ

for singular cardinals κ.
Obtaining consistency results about singular cardinals involves violating

the singular cardinal hypothesis (SCH). SCH states that if κ is singular strong
limit, then 2κ = κ+. One classical method of constructing a model where
SCH fails is to blow up the power set of a large cardinal, and then singularize
it. Then κ remains strong limit, but GCH does not hold below κ. The reason
for that is that by reflection, adding many subsets of κ in advance requires
adding many subsets of α for a measure one set of α’s below κ.

So this construction does not achieve what we can refer to as “the ultimate
failure” of SCH: having a singular cardinal κ, such that 2κ > κ+ and GCH<κ

holds. The same is true for Magidor’s original supercompact Prikry forcing,
with which he first showed that SCH at ℵω can be violated. Starting with a
cardinal κ that is λ-supercompact, supercompact Prikry forcing singularizes
all cardinals in the interval [κ, λ]. An important variation of this is diagonal
supercompact Prikry forcing, which singularizes cardinals in the interval
[κ, λ), where λ is a successor of a singular cardinal.

Another approach is to start with a cardinal that is already singular and
a limit of strong cardinals and then add many Prikry sequences via extender
based forcing to increase its power set. Extender based forcing is one of the
most direct ways to violate SCH, and it starts with strong cardinals in the
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ground model. It first appeared in Gitik-Magidor [4]. Since no subsets are
added in advance, GCH below κ can be maintained.

Here we describe a a construction that combines both strategies. More
precisely, we define a hybrid Prikry forcing that simultaneously singularizes
a large cardinal κ, singularizes and collapses an infinite interval of cardinals
above κ, and uses extenders to add many Prikry sequences to

∏
n κ, so that

SCH is violated. This way, since we are not adding subsets in advance, and
our main forcing does not add bounded subsets of κ, we can maintain GCH
below κ. Our forcing combines diagonal supercompact Prikry forcing with
extender based forcing. The former is used to singularize κ, adding a generic
sequence 〈xn | n < ω〉, where each xn ∈ Pκ(κ+n). The latter is used to add
many Prikry sequences though

∏
n κ ∩ xn+1.

Theorem 1.1. Suppose that κ is supercompact. Then there is a forcing
notion, P, which we call the hybrid Prikry, such that:

(1) P does not add bounded subsets of κ,
(2) setting µ := (κ+ω+1)V , we have that P preserves cardinals τ ≥ µ,
(3) P adds an ω sequence cofinal in κ and makes µ the successor of κ,
(4) P adds µ+ many new ω - sequences in

∏
n κ.

Finer analysis shows:

Theorem 1.2. Suppose in V , κ is supercompact and GCH holds. Let µ =
κ+ω+1. Then after forcing with the hybrid Prikry, in the generic extension
we have:

(1) κ is singular of cofinality ω, µ is the successor of κ, and cardinals
above µ are preserved.

(2) GCH holds below κ, and 2κ = κ++. And so SCH fails at κ.

Moreover, there is a scale at κ, whose set of bad points is stationary in the
ground model.

Scales are a central concept in PCF theory. Given a singular cardinal
κ = supn κn, where each κn is regular, a scale of length κ+ is a sequence
of functions 〈fα | α < κ+〉 in

∏
n κn that is increasing and cofinal with

respect to the eventual domination ordering, <∗. I.e. f <∗ g if for all large
n, f(n) < g(n). A point α < κ+ with cf(α) > ω is good if there is an
unbounded A ⊂ α such that {fβ(n) | β ∈ A} is strictly increasing for all
large n. Otherwise α is a bad point. A scale is good if on a club every point of
uncountable cofinality is good, and a scale is bad if it is not good, i.e. there
are stationary many bad points. The existence of a bad scale is a reflection
type property. For example, every scale above a supercompact cardinal is
bad.

The paper is organized as follows. In section 2 we define the main forc-
ing and prove some of its main properties, including the Prikry property,
cardinal preservation, and violating SCH. In section 3 we define the scale.
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2. The forcing

Suppose that in V , GCH holds and κ is a supercompact cardinal and set
µ := κ+ω+1. Let U be a normal measure on Pκ(µ), and for all n < ω, let Un
be the projection of U to Pκ(κ+n). Also let σ : V → M witness that κ is
κ+ω+2 + 1 - strong and let E = 〈Eα | α < κ+ω+2〉 be κ complete ultrafilters
on κ, where Eα = {Z ⊂ κ | α ∈ σ(Z)}. As in [2] we define a strengthening
of the Rudin-Keisler order: for α, β < κ+ω+2, set α ≤E β if α ≤ β and there
is a function f : κ→ κ, such that σ(f)(β) = α. For α ≤E β, fix projections
πβα : κ→ κ to witness this ordering, setting πα,α to be the identity. We do
this as in Section 2 of [2] with respect to κ, so that we have:

(1) σπβα(β) = α.
(2) For all a ⊂ κ+ω+2 with |a| < κ, there are unboundedly many β <

κ+ω+2, such that α <E β for all α ∈ a.
(3) For α < β ≤ γ, if α ≤E γ and β ≤E γ, then {ν < κ | πγ,α(ν) <

πγ,β(ν)} ∈ Eγ .
(4) If {αi | i < τ} ⊂ α < κ+ω+2 with τ < κ, are such that for all i < τ ,

αi <E α, then there is A ∈ Eα, such that for all ν ∈ A, for all
i, j < τ , if αi ≤E αj , then πα,αi(ν) = παj ,αi(πα,αj (ν)).

Definition 2.1. The poset Q = Q0 ∪Q1 is defined as follows:
Q1 = {f : κ+ω+2 ⇀ κ | |f | < κ+ω+1} and ≤1 is the usual ordering. Q0 has
conditions of the form p = 〈a,A, f〉 such that:

• a ⊂ κ+ω+2, |a| < κ, and β ≤E max(a) for all β ∈ a,
• f ∈ Q1 and a ∩ dom(f) = ∅,
• A ∈ Emax a

• for all α ≤E β ≤E γ in a, and ν ∈ πmax a,γ”A, πγ,α(ν) = πβ,α(πγ,β(ν)).
• for all α < β in a, for all ν ∈ A, πmax a,α(ν) < πmax a,β(ν)

〈b, B, g〉 ≤0 〈a,A, f〉 if:

(1) b ⊃ a,
(2) πmax bmax a”B ⊂ A,
(3) g ⊃ f .

Define ≤∗=≤0 ∪ ≤1 and for p, q ∈ Q, p ≤ q, if p ≤∗ q or p ∈ Q1, q =
〈a,A, f〉 ∈ Q0 and:

(1) p ⊃ f , a ⊂ dom(p)
(2) p(max a) ∈ A
(3) for all β ∈ a, p(β) = πmax a,β(p(max a))

Basically Q is the Prikry type forcing notion Qn from Section 2 of [2] with κ
replacing κn. Note that Q1 is dense in Q, and Q1 is equivalent to the Cohen
poset for adding κ+ω+2 many subsets to κ+ω+1. In particular, we have the
following:

Proposition 2.2. Q has the κ+ω+2 chain condition.
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We also remark that just forcing with Q0 will collapse κ+ω+1 to κ (see
Assaf Sharon’s thesis [9]).

Definition 2.3. For a condition p = 〈a,A, f〉 ∈ Q0 and ν ∈ A, let p_ν =
f ∪ {〈β, πmax a,β(ν)〉 | β ∈ a}. I.e. p_ν is the weakest extension of p in Q1

with ν in its range.

Note that if g ∈ Q1, with g ≤ p = 〈a,A, f〉, there is a unique ν ∈ A such that
g ≤ p_ν (take ν = g(max a)). Furthermore, if g ≤ q ≤ p, q = 〈aq, Aq, f q〉,
p = 〈ap, Ap, fp〉, and g ≤ q_ν, then g ≤ p_ν ′, where ν ′ = πmax aq ,max ap(ν).

Proposition 2.4. Q has the Prikry property. I.e. given a condition p and
a formula in the forcing language φ, there is q ≤∗ p such that q decides φ.

Proof. The proof is standard and appears in [2]. We include it for complete-
ness. Let p = 〈a,A, f〉 be a condition and φ be a formula. For each ν ∈ A,
let gν ≤ p_ν be such that gν ‖ φ and set fν = gν � (dom gν \ a).

Since the domain of the fν ’s is bigger than the size of A, we can arrange
that the fν ’s are compatible. Shrink A to a set A′ ∈ Emax a such that for all
ν ∈ A′, gν decides φ the same way. Let f ′ =

⋃
ν∈A′ fν . Then p′ = 〈a,A′, f ′〉

decides φ.
�

We are ready to define the main forcing. For x, y ∈ Pκ(κ+ω), we will
denote κx = κ∩x and use the notation x ≺ y to mean x ⊂ y and o.t.(x) < κy.
Since on a measure one set, κx is an inaccessible cardinal, we assume this is
always the case.

Definition 2.5. Conditions in P are of the form

p = 〈x0, f0, ..., xl−1, fl−1, Al, Fl, Al+1, Fl+1...〉
where l = length(p) and:

(1) For n < l,
(a) xn ∈ Pκ(κ+n), and for i < n, xi ≺ xn,
(b) fn ∈ Q1.

(2) For n ≥ l,
(a) An ∈ Un, and xl−1 ≺ y for all y ∈ Al.
(b) Fn is a function with domain An, for y ∈ An, Fn(y) ∈ Q0.

(3) For x ∈ An, denote Fn(x) = 〈anx, Anx, fnx 〉. Then for l ≤ n < m,
y ∈ An, z ∈ Am with y ≺ z, we have any ⊂ amz .

For a condition p, we will use the notation p = 〈xp0, f
p
0 , ..., x

p
l−1, f

p
l−1, A

p
l , F

p
l , ...〉,

and for n ≥ l and y ∈ Apn, F pn(y) = 〈a(F pn(y)), A(F pn(y)), f(F pn(y))〉. The
stem of p is h = 〈xp0, f

p
0 , ..., x

p
l−1, f

p
l−1〉.

For two conditions p, q, set q ≤ p if p = 〈x0, fp0 , ..., xn−1, f
p
n−1, A

p
n, F

p
n , ...〉,

q = 〈x0, f q0 , ..., xn+m−1, f
q
n+m−1, A

q
n+m, F

q
n+m, ...〉, and:

(1) For i < n, f qi ⊃ f
p
i .

(2) For i < m, xn+i ∈ Apn+i.
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(3) For i < m, f qn+i ≤Q F
p
n+i(xn+i) and if ν < κ is the unique such that

f qn+i ≤Q F
p
n+i(xn+i)

_ν, then:
• if i < m− 1, we have ν < κxn+i+1,
• if i = m− 1, we have ν < κz for all z ∈ Aqn+m.

(4) For i ≥ n+m, Aqi ⊂ A
p
i and for all y ∈ Aqi , F

q
i (y) ≤Q F

p
i (y).

We say that q is a direct extension of p, denoted by q ≤∗ p, if q ≤ p and
lh(q) = lh(p).

Sometimes we will say that we shrink a condition p to mean replacing p with
a direct extension.

Lemma 2.6. 〈P,≤∗〉 is κ-closed.

Proof. Let τ < κ and 〈pα | α < τ〉 be a ≤∗-decreasing sequence in P of
conditions with some fixed length l. Let ~x = 〈x0, ..., xl−1〉 be such that for

some (equivalently all) α, stem(pα) = 〈~x, ~fpα〉. First let fi be stronger than
each fpαi for i < l. Also, for n ≥ l, let An =

⋂
α<τ A

pα
n

Next we will define 〈Fn | l ≤ n < ω〉 by induction on n, such that each Fn
has domain An, for x ∈ An, Fn(x) = 〈a(Fn(x)), A(Fn(x)), f(Fn(x))〉 ∈ Q1.
We will maintain that for all l ≤ k < n, x ∈ Ak, y ∈ An if x ≺ y, then
a(Fk(x)) ⊂ a(Fn(y)). Note that this implies that a(Fk(x))∩dom(f(Fn(y))) =
∅.

Let d =
⋃
α<τ,l≤n<ω,x∈An dom(f(F pαn (x))). Then d is a bounded subset of

κ+ω+2. Note that taking lower bounds of elements in Q0 requires more than
just taking the union of the first coordinate i.e. the a′s. We also have to
take a maximal element. Thus when defining the lower bound, we will make
sure that the maximal element of each a(Fk(x)) is above max(d). To do
that we use that there are always unboundedly many choices for a maximal
element.

Fix n and suppose we have defined Fk for all l ≤ k < n. For y ∈ An, let
a′y =

⋃
α<τ a(F pαn (y)), and a′′y =

⋃
k<n,x∈Ak,x≺y a(Fk(x)). Let ρ > max(d)

be a maximal element for a′y ∪ a′′y and set ay = a′y ∪ a′′y ∪ {ρ}.
Finally set fy =

⋃
α<τ f(F pαn (y)) and Ay to be the intersection of all

π−1
ρ,max(a(F pαn (y)))

A(F pαn (y)) for α < τ . Then define Fn(y) = 〈ay, Ay, fy〉.

Claim 2.7. ay ∩ dom(fy) = ∅

Proof. By construction ρ /∈ dom(fy). Now, suppose that ξ ∈ a(F pαn (y))
for some α < τ . Then for any β < τ , setting γ = max(α, β), we have
a(F pαn (y)) ⊂ a(F

pγ
n (y)) and dom(f(F

pβ
n (y))) ⊂ dom(f(F

pγ
n (y))). Since

a(F
pγ
n (y)) ∩ dom(f(F

pγ
n (y))) = ∅, we have ξ /∈ dom(f((F

pγ
n (y))). It follows

that a′y ∩ dom(fy) = ∅.
Finally, to show that a′′y ∩ dom(fy) = ∅, we argue that for all k < n,

x ∈ Ak with x ≺ y, a(Fk(x)) ∩ dom(fy) = ∅. Use induction on k. Denote
a(Fk(x)) = a′x ∪ a′′x ∪ {max(a(Fk(x)))}, where a′x, a

′′
x are defined as above

but for x. By construction the maximal element is not in the domain of fy.
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Also since x ≺ y, a′x ⊂ a′y, and so it is disjoint from dom(fy). Lastly, since
z ≺ x ≺ y implies z ≺ y, by induction we have that a(Fm(z))∩dom(fy) = ∅
for any m < k, z ∈ Am, z ≺ x. So we have that a′′x ∩ dom(fy) = ∅.

This concludes the argument that a′′y ∩ dom(fy) = ∅, and finishes the
claim. �

Finally define p by setting p = 〈x0, f0, ..., xl−1, fl−1, Al, Fl, Al+1, Fl+1, ...〉.
Then p is a lower bound.

�

Next we show that P has the Prikry property. First we introduce some
notation.

Definition 2.8. Let p be a condition with length l. For y ∈ Apl and ν ∈
A(F pl (y)), define p_〈y, ν〉 =:

〈xp0, f
p
0 , ..., x

p
l−1, f

p
l−1, y, F

p
l (y)_ν,Ay,νl+1, F

y,ν
l+1, ...〉

where for n > l:

• Ay,νn = Apn ∩ {z | y ≺ z, ν < κz},
• F y,νn = F pn � Ay,νn .

Similarly, for any n > l, ~y = 〈yl ≺ ... ≺ yn〉 of points in
∏
l≤i≤nA

p
i , and

~ν ∈
∏
l≤i≤nA(F pi (yi)) with each νi < κyi+1, define p_〈~y, ~ν〉 to be the weakest

extension of p with length n+ 1 such that the stem is derived from ~y and ~ν.

Also, if p, q are conditions, n < lh(p), lh(q), we say that [F pn ]Un ≤ [F qn ]Un
if for almost all x ∈ Apn, F pn(x) ≤Q0 F

q
n(x).

Lemma 2.9. (Diagonal lemma) Suppose that p is a condition with length l,
and for all y ∈ Apl and ν ∈ A(F pl (y)), there are conditions py,ν ≤∗ p_〈y, ν〉,
such that:

(1) For all i < l, y1, y2 ∈ Apl and ν1 ∈ A(F pl (y1)), ν2 ∈ A(F pl (y2)), we
have that
fp

y1,ν1

i and fp
y2,ν2

i are compatible.
(2) for each y ∈ Apl , 〈f

y,ν
l � (dom(fy,νl ) \ apl (y)) | ν ∈ A(F pl (y))〉 are

pairwise compatible.

(3) For all n, 〈[F p
y,ν

n ]Un | y ∈ A
p
l , ν ∈ A(F pl (y))〉 are pairwise compatible.

Then there is p′ ≤∗ p such that if q ≤ p′ with lh(q) ≥ lh(p)+1, then q ≤ py,ν
for some y, ν.

Proof. Denote p = 〈x0, f0, ..., xl−1, fl−1, Al, Fl, ...〉, Fn(y) = 〈any , Any , fny 〉 and

each py,ν = 〈x0, fy,ν0 , ..., xl−1, f
y,ν
l−1, y, f

y,ν
l , Ay,νl+1, F

y,ν
l+1, ...〉. Also denote F y,νn (z) =

〈ay,νn (z), Ay,νn (z), fy,νn (z)〉.
Define p′ = 〈x0, f ′0, ..., xl−1, f ′l−1, A′l, F ′l , ...〉 as follows:

• f ′i =
⋃
y∈Al,ν∈Aly f

y,ν
i for i < l.

• A′l = Al,

• F ′l (y) = 〈aly, Aly,
⋃
ν∈Aly f

y,ν
l � (dom(fy,νl ) \ aly)〉
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• For n > l, A′n = 4y∈Al,ν∈AlyA
y,ν
n = {z ∈ An | z ∈

⋂
y≺z,ν∈Aly∩κz A

y,ν
n },

• For n > l, let [F ′n]Un be stronger than each [F y,νn ]Un for y ∈ Al, ν ∈
Aly. Here we use that the number of such pairs is κ+l, and jn(Q0) is

closed under sequences of length κ+n. By further shrinking A′n we
can arrange that for all y ∈ A′n, F ′n(y) ≤Q F z,νn (y) for all z ≺ y and
ν ∈ Alz ∩ κy. Also, arguing as in Lemma 2.6 we arrange that the
F ′n’s satisfy the last item of the definition of P.

Then p′ is as desired.
�

Corollary 2.10. Let 0 < n < ω. For every condition p and every formula
in the forcing language φ, there is p′ ≤∗ p, such that for all q ≤ p′ with
lh(q) = n+ lh(p), if there is r ≤∗ q which decides φ, then q decides φ.

Proof. By induction on n. If n = 0, the result is immediate. So, suppose
that n > 0, and the corollary holds for n−1. Fix p and φ. For all y ∈ Aplh(p)
and ν ∈ Aplh(p)(y), by the inductive assumption there is py,ν ≤∗ p_〈y, ν〉,
such that for all q ≤ py,ν with lh(q) = n + lh(p), if there is r ≤∗ q which
decides φ, then q decides φ.

Defining these condition inductively, we can arrange that they satisfy
the assumptions of the diagonal lemma. Apply the diagonal lemma to the
conditions py,ν and p to get p′ ≤∗ p, such that if q ≤ p′ with lh(q) ≥ lh(p)+1,
then q ≤ py,ν for some y, ν. Then p′ is as desired. For if q ≤ p′ with
lh(q) = n + lh(p), let y, ν be such that q ≤ py,ν . Now, if r ≤∗ q decides φ,
then by the way we chose py,ν , it follows that q decides φ.

�

Lemma 2.11. (The Prikry property) Suppose p is a condition and φ is a
formula in the forcing language, then there is q ≤∗ p which decides φ.

Proof. We start by showing two claims. The first claim states that we can
restrict ourselves to a fixed length when looking at extensions of p deciding
φ. The second claim applies the diagonal lemma to shrink p so that the
weakest extensions of the fixed length decide φ.

Claim 2.12. There is lh(p) ≤ n < ω and p′ ≤∗ p, such that for all q ≤∗ p′,
there is r ≤ q with length n such that r decides φ.

Proof. Suppose otherwise. I.e. we have that:
(†) for all n ≥ lh(p), for all direct extensions p′ of p, there is q ≤∗ p′, such

that for all r ≤ q with length n, r 6‖ φ.
We will build a decreasing sequence of conditions 〈pn | l ≤ n < ω〉, where

l = lh(p), such that each pn ≤∗ p, and for all r ≤ pn of length n, we have
that r does not decide φ. Set pl = p. Suppose n > l and we have defined
pn−1. Let pn be given by applying (†) to n and pn−1. Finally, let q be
stronger than every pn. It follows that no r ≤ q decides φ. Contradiction.

�
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By the above claim and Corollary 2.10 we can shrink p and fix n so that:

• for all direct extensions p′ of p, there is q ≤ p′ of length n that
decides φ,
• for all q ≤ p with lh(q) = n, if there is r ≤∗ q which decides φ, then
q decides φ.

Assume for simplicity that lh(p) = 1 and n = 3. The general case is
similar. Denote p = 〈x0, f0, A1, F1, ...〉, and for y ∈ A,n > 0, Fn(y) =
〈any , Any , fny 〉. For x ∈ A1, y ∈ A2, x ≺ y and ν ∈ A1

x let B+
x,ν,y = {δ ∈

A2
y | p_〈〈x, y〉, 〈ν, δ〉〉 
 φ}, B−x,ν,y = {δ ∈ A2

y | p_〈〈x, y〉, 〈ν, δ〉〉 
 ¬φ}, and

Bc
x,ν,y = A2

y \ (B+
x,ν,y ∪ B−x,ν,y). One of these sets is measure one; let Bx,ν,y

be that measure one set.
Set Bx,y =

⋂
ν∈A1

x∩κy Bx,ν,y
Let A+

x,ν = {y ∈ A2 | Bx,ν,y = B+
x,ν,y}, A−x,ν = {y ∈ A2 | Bx,ν,y = B−x,ν,y},

Acx,ν = A2 \ (A+
x,ν ∪ A+

x,ν). One of these is measure one; let Ax,ν be that
measure one set.
A′2 = 4Ax,ν = {y ∈ A2 | y ∈

⋂
x≺y,ν<κy Ax,ν}. Define F ′2 by dom(F ′2) =

A′2 and each F ′1(y) = 〈ay,
⋂
x≺y Bx,y, fy〉.

Let B+
x = {ν ∈ A1

x | Ax,ν = A+
x,ν}, B−x = {ν ∈ A1

x | Ax,ν = A−x,ν}, and

Bc
x = A1

x \ (B+
x ∪B−x ).

Set Bx = B+
x if it is measure one, B−x if it is measure one, and Bc

x

otherwise.
Let A+ = {x ∈ A1 | Bx = B+

x }, A− = {x ∈ A1 | Bx = B−x }, Ac =
A1 \ (A+ ∪ A−). One of these is measure one; let A′1 be that measure one
set. Define F ′1 by dom(F ′1) = A′1 and F ′1(x) = 〈ax, Bx, fx〉.

Set p′ = 〈x0, f0, A′1, F ′1, A′2, F ′2〉_p � [3, ω). We will show that p′ is as
desired.

By the way we choose p, we can fix condition r ≤ p′ with length 3, such
that r ‖ φ. We have to show that p′ decides φ.

Claim 2.13. A′1 = A+ or A′1 = A−.

Proof. Let x, y, ν, δ, be such that r ≤∗ p′_〈〈x, y〉, 〈ν, δ〉〉. Then since p was
chosen to satisfy Corollary 2.10 for n = 2, we have that p′_〈〈x, y〉, 〈ν, δ〉〉
decides φ. Now, suppose for contradiction that A′1 = Ac, then x ∈ Ac

and so Bx = Bc
x. Then since ν ∈ Bx = Bc

x, we have that Ax,ν = Acx,ν .
Since y ∈ A′2, x ≺ y, and ν < κy, we have that y ∈ Ax,ν = Acx,ν . So,
Bx,ν,y = Bc

x,ν,y. Then δ ∈ Bx,y ⊂ Bx,ν,y = Bc
x,ν,y. So, p′_〈〈x, y〉, 〈ν, δ〉〉 does

not decide φ. Contradiction. �

Then p′ decides φ.
�

Corollary 2.14. P does not add bounded subsets of κ.

It follows that all cardinals less than or equal to κ are preserved and GCH
holds below κ. Next we show that µ is preserved. We use the following fact.
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Proposition 2.15. Suppose that D is a dense set and p is a condition with
length l. Then there is some n and q ≤∗ p, such that for all ~y ∈

∏
l≤i<nA

p
i ,

~ν ∈
∏
l≤i<nA

p
yi, we have that q_〈~y, ~ν〉 ∈ D

Proof. This is essentially the Prikry property, so we only outline the proof.
First by shrinking measure one sets, we may assume that for some fixed n,
for all q ≤ p of length n + l, there is some r ≤∗ q such that r ∈ D. Then
diagonalize over ~y ∈

∏
l≤i<nA

p
i , ~ν ∈

∏
l≤i<nA

p
i (yi) to get a condition q ≤∗ p

such that for all ~y, ~ν, q_〈~y, ~ν〉 is in D.
�

Let G be P generic, and let 〈x∗n | n < ω〉, each x∗n ∈ Pκ(κ+n), be the
added generic sequence. Set λn = x∗n∩κ. Standard density arguments yield
the following.

Proposition 2.16. (1) if 〈An | n < ω〉 ∈ V is a sequence of sets such
that every An ∈ Un, then for all large n, x∗n ∈ An.

(2)
⋃
n x
∗
n = (κ+ω)V ,

(3) for each n ≥ 0, the cofinality of (κ+n)V in V [G] is ω.

Proposition 2.17. µ := (κ+ω+1)V remains a cardinal after forcing with P.

Proof. Suppose otherwise. Then in V [G] the cofinality of µ is less than κ.

Let n and p ∈ G with lh(p) > n be such that p 
 “ḟ : τ → µ is unbounded

and τ < λ̇n”. For all γ < τ , let Dγ = {q ≤ p | (∃η)(q 
 ḟ(γ) = η)}.
Then Dγ is dense below p. For each γ < τ , let pγ ≤∗ p and nγ be given
by Proposition 2.15. By defining 〈pγ | γ < τ〉 inductively, we arrange that
〈pγ | γ < τ〉 is a decreasing sequence. Let p′ be such that p′ ≤∗ pγ for all γ.

Fix γ and 〈~x, ~ν〉 with length nγ compatible with pγ . Let α
〈~x,~ν〉
γ be such

that
pγ_〈~x, ~ν〉 
 ḟ(γ) = α〈~x,~ν〉γ .

Let αγ = sup〈~x,~ν〉 α
〈~x,~ν〉
γ < µ and let α = supγ<τ αγ < µ. Then each pγ 


ḟ(γ) ≤ αγ , and so p′ 
 (∀γ)(ḟ(γ) ≤ α). Contradiction.
�

Our next goal is to show that µ+ is preserved. Let

P0 := {〈xp0, ..., x
p
n−1, A

p
n, ...〉 | p ∈ P},

with the induced ordering from P. Since conditions with the same stem
are compatible, P0 has the µ-chain condition. Characterization of genericity
of P0 is given by condition (1) above, i.e. the condition is both necessary
and sufficient for a generic sequence. This follows by adapting Mathias’
arguments in [7] to diagonal supercompact Prikry. Then we have that G
generates a generic filter for P0. Next we show that P/P0 has the µ+-chain
condition.

Lemma 2.18. Suppose that G0 is P0-generic over V . Then P/G0 has the
µ+ chain condition.
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Proof. Say G0 generates the generic sequence 〈x∗n | n < ω〉. Suppose that
〈pα | α < µ+〉 are conditions in P/G0. Then there is an unbounded S ⊂ µ+,
k < ω, such that:

(1) for all α ∈ S, lh(pα) = k,
(2) for all n < k, {dom(fpαn ) | α ∈ S} forms a ∆-system, with fpα and

fpβ having the same values on the kernel for α, β ∈ S,
(3) for all n ≥ k, {a(F pαn (x∗n)) ∪ dom(f(F pαn (x∗n))) | α ∈ S} forms a ∆-

system, with f(F pαn (x∗n)) and f(F
pβ
n (x∗n)) having the same values on

the kernel for α, β ∈ S. Also, a(F pαn (x∗n)) ∩ dom(f(F
pβ
n (x∗n))) = ∅.

Then for any α, β ∈ S, n ≥ k, F pαn (x∗n) and F pαn (x∗n) are compatible in
Q0. To find a lower bound, just pick a maximal element for a(F pαn (x∗n)) ∪
a(F

pβ
n (x∗n)) that is above sup(dom(f(F pαn (x∗n)))) and sup(dom(f(F

pβ
n (x∗n)))).

Let α, β ∈ S. Since for all n ≥ k, F pαn (x∗n) and F pαn (x∗n) are compatible,
by genericity of the x∗n’s it follows that for all large n, Bn = {x ∈ Apαn ∩A

pβ
n |

F pαn (x) and F pαn (x) are compatible} ∈ Un. Say, for all n ≥ k′, Bn ∈ Un.
Define a condition p with length k′ as follows. For n < k, let fn = fpαn ∪f

pβ
n

and for k ≤ n < k′, let Fn(x∗n) ∈ Q0 be stronger than F pαn (x∗n) and F pαn (x∗n),
and then let fn ≤Q Fn(x∗n)_ν for some ν < κx∗n+1

. Since the conditions are

in P/G0, we can take such a ν. Set stem(p) = 〈x∗0, f0, ..., x∗k′−1, fk′−1〉. Also

for n ≥ k′, set Apn = Bn, and for x ∈ Apn, let F pn(x) be stronger than F pαn (x)
and F pαn (x). Then p is stronger than pα and pβ.

�

It follows that forcing with P preserves µ+. Next we show that in the
generic extension κ has µ+ = (κ+ω+2)V many subsets. We have the added
generic functions fn : (κ+ω+2)V → κ for each n. Define tα(n) = fn(α).
Then each tα ∈

∏
n κ. Let (in V [G]) Fn =

⋃
p∈G,l(p)≤n a

p
n(xn). Here F pn(x) =

〈apn(x), Apn(x), fpn(x)〉. Set F =
⋃
n Fn.

Proposition 2.19. (1) If α < β are both in F , then tα <
∗ tβ.

(2) F is unbounded in (κ+ω+2)V .

Proof. For (1), suppose that α < β are both in F . Let p, q ∈ G be such that
for all large n, α ∈ apn(xn), β ∈ aqn(xn). Let r ∈ G be a common extension
of p, q. Then for some k, for all n ≥ k, {α, β} ⊂ arn(xn). So, if r′ ≤ r is in
G and has length n+ 1 for n ≥ k, by the last condition of the definition of
Q0, we get that f r

′
n (α) < f r

′
n (β). So, for all large n, tα(n) < tβ(n).

For (2), suppose that β < (κ+ω+2)V . We claim that D = {p | (∃γ <
(κ+ω+2) \ β)(γ ∈

⋂
n≥lh(p),y∈Apn a

p
n(y))} is dense. For if p is a condition, let

γ ∈ (κ+ω+2)V \ (
⋃
n≥lh(p),y∈Ap(a

p
n(y)∪dom(fpn(y)))), such that β < γ. Then

extend each F pn(y) to obtain 〈any , Any , fny 〉, such that γ ∈ any . Let q ≤ p be

such that F qn(y) = 〈any , Any , fny 〉. Then q ∈ D. Now, let r ∈ D ∩ G, then r
witnesses that there is γ ∈ F such that γ > β.

�
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Remark 1. Using the above and by the definition of the ordering of the
forcing we can show that that if α ∈ F , then for each n, tα ∈

∏
n λn+1.

Remark 2. We can use F ∩ µ to define a good scale as described in [1].

It follows that in V [G], 2κ = (κ+ω+2)V = (κ++)V [G]. So, SCH fails at κ.

3. The scale

Fix a scale 〈g∗α | γ < µ〉 ∈ V in
∏
n κ

+n+1. Set S := {γ < µ |
γ is a bad point for 〈g∗α | γ < µ〉}. Since κ is supercompact in V , by stan-
dard reflection arguments S is stationary in V . In this section we define a
scale at κ in the generic extension, such that every γ ∈ S is bad for this new
scale.

First we show a bounding lemma. We will use it to make sure that the
scale we define in V [G] is indeed cofinal. Recall that G generates the generic
sequence 〈x∗n | n < ω〉 and we defined λn = κx∗n for n < ω.

Lemma 3.1. Suppose that in V [G], h ∈
∏
n λ

+n+1
n . Then there is a sequence

of functions 〈Hn | n < ω〉 in V , such that dom(Hn) = Pκ(κ+n), Hn(x) <
κ+n+1
x for all x, and for all large n, h(n) < Hn(x∗n).

Proof. Let p force that ḣ is as in the statement of the lemma. For simplicity
assume that the length of p is 0.

Fix n < ω and x ∈ Apn. For all ~z ∈
∏
i≤nA

p
i , ~ν ∈

∏
i≤nA

p
i (zi) of length

n + 1 with zn = x, p_〈~z, ~ν〉 
 ḟ(n) < κ+n+1
x . Here zn denotes the last

element of ~z. By the Prikry property we can build a decreasing sequence
〈qγ | γ < κ+n+1

x 〉, such that for each γ, qγ ≤∗ p_〈~z, ~ν〉 and qγ decides

“ḣ(n) = γ”. Let q〈~z,~ν〉 ≤∗ qγ , for each γ. Then q〈~z,~ν〉 decides the value of

ḣ(n). By defining the q〈~z,~ν〉’s inductively, we can arrange that they satisfy
the assumptions of the diagonal lemma.

Define Hn(x, ν) = sup{γ < κ+n+1
x | (∃~z, ~ν)(lh(~z) = lh(~ν) = n + 1, zn =

x, νn = ν, q~z,~ν 
 ḣ(n) = γ)}+ 1. Here zn and νn denote the last elements of
~z and ~ν respectively.

Then Hn(x, ν) < κ+n+1
x . So, there is a measure one set An(x), such that

for all ν ∈ An(x) this has some constant value, denote it by Hn(x). Let p′

be obtained from p by shrinking the sets Apn(x) to An(x).

We apply the Diagonal Lemma to q〈~z,~ν〉 for all 〈~z, ~ν〉 of length n+ 1, and
get qn ≤∗ p′ to be such that if r ≤ qn has length at least n + 1, then for
some 〈~z, ~ν〉, r ≤ q〈~z,~ν〉. Let q be stronger than each qn. Then q forces that
〈Hn | n < ω〉 is as desired.

�

The next lemma will be used to show that a witness of goodness in the
generic extension gives rise to a witness of goodness in the ground model.
In particular, if a point is bad in V , then it is bad in V [G].
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Lemma 3.2. Let τ < κ be a regular uncountable cardinal in V (and so in
V [G]), and suppose V [G] |= A ⊂ ON, o.t.(A) = τ . Then there is a B ∈ V
such that B is an unbounded subset of A.

Proof. Let p ∈ G, p 
 ḣ : τ → Ȧ enumerate Ȧ. By the Prikry lemma, define
a ≤∗-decreasing sequence 〈pα | α < τ〉, such for every α < τ , pα ≤∗ p and

there is nα < ω, such that every q ≤ pα with length nα decides ḣ(α). Then
there is an unbounded I ⊂ τ and n < ω such that for all α ∈ I, n = nα.
Let p′ be stronger than all pα for α < τ . By appealing to density, we may
assume that p′ ∈ G. Let q ≤ p be a condition in G with length n, and set
B = {γ | (∃α ∈ I)q 
 ḣ(α) = γ}. Then B is as desired. �

Recall that µ = (κ+ω+1)V and that we fixed in advance a bad scale
〈g∗β | β < µ〉 in

∏
n κ

+n+1 in V , such that it has a stationary set of bad
points, S of cofinality less than κ.
∀n < ω, ∀η < κ+n+1, fix fηn : Xn −→ V , such that ∀xfηn(x) < κ+n+1

x , and
[fηn ]Un = η. Define in V [G], 〈gβ | β < µ〉 in

∏
n λ

+n+1
n by:

gβ(n) = f
g∗β(n)
n (x∗n)

Corollary 3.3. 〈gβ | β < µ〉 is a scale in V [G], whose set of bad point is
stationary in V .

Proof. By the way we defined 〈gβ | β < µ〉 and Lemma 3.1, we get that it
is a scale (see for example the arguments in [1]). Also, if γ is a good point
in V [G] for 〈gβ | β < µ〉 with cofinality τ with ω < τ < κ, then γ is a good
point in V for 〈g∗β | β < µ〉. This follows from Lemma 3.2, which implies

that if there is a witness for goodness in V [G], then there is a witness for
goodness in V .

�

We conclude with some questions.

Question 1. How much failure of square can we get in the final generic
extension?

In [5], it is shown that failure of weak square is consistent with not SCH at
κ, but there GCH also fails below κ. It is open whether failure of SCH at κ
together with GCH below κ is consistent with ¬�∗κ, or even with ¬�κ,λ for
all λ < κ. Another question concerns smaller cardinals:

Question 2. Can we interleave collapses and obtain the present construc-
tion for κ = ℵω?

A positive answer to the last question will probably involve using short
extenders.
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